If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2+2f=0
a = 1; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·1·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*1}=\frac{-4}{2} =-2 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*1}=\frac{0}{2} =0 $
| 5x+3=2×-6 | | -8(2x+3)+3x=-6(2x+5) | | -2-3(1-x)=8x-(8x-3) | | -10x+5(2x+5)=20 | | 3m+20=98 | | 4x+24-6x=36 | | 46=2h-16 | | 1/4x+3=2x–5/3 | | -6u=-5u+4 | | 15x+150=18x+75 | | 1.2n+.68=5 | | 6(x-4)=-72 | | 11=2–3x | | 3(n+12)-n=8 | | k/9+10=13 | | 45+-3b=328 | | 7x+21/4=-49 | | 3x-4=28+4x | | -2=x-5/10 | | 5x+2-10=4x+12 | | -3n+1=8n | | 2(y+3)=2(y-2)+10 | | 5y-3=2y=12 | | 3x+18+x+93=180 | | 48=18k-4 | | Q=12-2pp= | | 5(x-3)+x=4x-6 | | 2(1.6y)-1.33=-y+5.46 | | r/2+28=21 | | 5.4t+14.6-10.1t=4.8+5 | | 2p+p=-3p+12 | | 3(n+1)=1−6(3n-5) |